M. Please Save Pigeland

$$
求 Min(\frac{\sum dis_{x, c_{i}}}{gcd \lbrace dis_{x, c_{i}} \rbrace } )
$$

$$
gcd(a_{1}, a_{2}, …, a_{n}) = gcd(a_{1}, a_{2} - a_{1}, …, a_{n} - a_{1})
$$

分子/母两部分可用换根 DP 计算

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
#include <bits/stdc++.h>
using namespace std;

struct Node {
long long g;
int lpos, rpos;
// init
Node() {
g = 0;
}

Node(long long _g) {
g = _g;
}

// update
Node& operator+=(const Node& n) {
this->g += n.g;
return *this;
}

// push_up
Node push_up(const Node& ln, const Node& rn) {
this->g = gcd(ln.g, rn.g);
return *this;
}
};

struct SegmentTree {
#define lp (p << 1)
#define rp (p << 1 | 1)
vector<Node> val;
SegmentTree(int n = 0) {
resize(n);
}

void resize(int n) {
val.resize((n + 1) * 4);
}

void build(int l, int r, int p = 1) {
val[p].lpos = l;
val[p].rpos = r;
if (l == r) {
return;
}
int mid = (l + r) >> 1;
build(l, mid, lp);
build(mid + 1, r, rp);
val[p].push_up(val[lp], val[rp]);
}

void update(int pos, const Node& k, int p = 1) {
if (val[p].lpos == pos && pos == val[p].rpos) {
val[p] += k;
return;
}

int mid = (val[p].lpos + val[p].rpos) >> 1;
if (pos <= mid) {
update(pos, k, lp);
} else {
update(pos, k, rp);
}
val[p].push_up(val[lp], val[rp]);
}

Node query(const int& l, const int& r, int p = 1) {
if (l <= val[p].lpos && val[p].rpos <= r) {
return val[p];
}

int mid = (val[p].lpos + val[p].rpos) >> 1;
if (r <= mid) {
return query(l, r, lp);
}

if (mid < l) {
return query(l, r ,rp);
}

return Node().push_up(query(l, r, lp), query(l, r, rp));
}
};

inline void Tecy() {
const long long inf = 1e18;
long long n, k;
cin >> n >> k;
vector<int> c(k);
vector<int> ok(n + 1);
for (auto& x : c) {
cin >> x;
ok[x] = true;
}

vector<vector<pair<int, long long>>> tree(n + 1);
for (int i = 1; i < n; i++) {
int u, v;
long long w;
cin >> u >> v >> w;
tree[u].push_back({ v, w });
tree[v].push_back({ u, w });
}

if (k <= 1) {
cout << 0;
return;
}

int tot = 0;
vector<long long> dfn(n + 1);
vector<long long> siz(n + 1);
vector<long long> l(n + 1);
vector<long long> r(n + 1);
long long last = 0;
auto get = [&](auto get, int u, int f) -> void {
l[u] = last + 1;
if (ok[u]) {
dfn[u] = ++tot;
siz[u] = 1;
last = tot;
}

for (auto& [v, w] : tree[u]) {
if (v != f) {
get(get, v, u);
siz[u] += siz[v];
}
}

r[u] = l[u] + siz[u];
};
get(get, 1, 0);

vector<long long> sum(n + 1);
SegmentTree sgt(k);
sgt.build(1, k);
auto dfs = [&](auto dfs, int u, int f) -> void {
for (auto& [v, w] : tree[u]) {
if (v != f) {
dfs(dfs, v, u);
sum[u] += sum[v] + siz[v] * w;
if (siz[v]) {
sgt.update(l[v], { w });
if (r[v] <= k) {
sgt.update(r[v], { -w });
}
}
}
}
};
dfs(dfs, 1, 0);

vector<long long> g(n + 1);
auto dp = [&](auto dp, int u, int f) -> void {
g[u] = abs(gcd(sgt.val[1].g, sgt.query(2, k).g));
for (auto& [v, w] : tree[u]) {
if (v != f) {
sum[v] += sum[u] - sum[v] + (k - siz[v] * 2) * w;
sgt.update(1, { w });
if (siz[v]) {
sgt.update(l[v], { -w * 2 });
if (r[v] <= k) {
sgt.update(r[v], { w * 2 });
}
}
dp(dp, v, u);
sgt.update(1, { -w });
if (siz[v]) {
sgt.update(l[v], { w * 2 });
if (r[v] <= k) {
sgt.update(r[v], { -w * 2 });
}
}
}
}
};
dp(dp, 1, 0);

long long ans = inf;
for (int i = 1; i <= n; i++) {
ans = min(ans, sum[i] * 2 / g[i]);
}
cout << ans;
}

int main() {
ios::sync_with_stdio(false);
cout.tie(0);
cin.tie(0);

int T = 1;
// cin >> T;
while (T--) {
Tecy();
}

return 0;
}